MySQL:SQL优化

插入数据

insert

如果一次性往mysql中插入多条数据,可以使用以下几种优化方案:

1.使用批量插入数据 (适合500-1000这样子)

insert into test values(1,'1'),(2,'2'),(3,'3')..;

2.数据再多点就使用  手动控制事务

start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

3.主键顺序插入,性能要高于乱序插入。

主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

 大批量插入数据

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
-- 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n' ;

测试17完成,要是使用insert大概十多分钟

 主键优化

主键顺序插入的性能是要高于乱序插入的,原因:

行数据,都是存储在聚集索引的叶子节点上的。InnoDB的逻辑结构图:

在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。

页分裂

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。

A.主键顺序插入效果

B.主键乱序插入效果

C.页合并

索引的设置原则

  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
  • 业务操作时,避免对主键的修改。

order by 优化

mysql 的排序有两种方式:

  • Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sortbuffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
  • Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。

对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。

某表有phone age两个字段,且没有索引的情况下:
explain select id,age,phone from tb_user order by age ;
explain select id,age,phone from tb_user order by age, phone ;
extra都是Using filesort,因为phone和age都没有索引

创建索引后:
explain select id,age,phone from tb_user order by age;
在执行上面两个查询语句,extra变为Using index,性能提高!

对俩者进行降序排序:
explain select id,age,phone from tb_user order by age desc , phone desc ;
Extra中出现了 Backward index scan,这个代表反向扫描索引

根据phone,age进行升序排序,phone在前,age在后。
explain select id,age,phone from tb_user order by phone , age;
排序时,也需要满足最左前缀法则,否则也会出现 filesort

根据age, phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc , phone desc ;
会出现Using filesort    可以再创建一个联合索引
create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);

order by优化原则:

  • A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
  • B. 尽量使用覆盖索引。
  • C. 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
  • D. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k)。

 group by优化

A. 在分组操作时,可以通过索引来提高效率。
B. 分组操作时,索引的使用也是满足最左前缀法则的。

limit优化

覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到)

优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

select id from tb_user limt 900000,10;
select * from tb_user limt 900000,10;  前者更快

explain select * from tb_user where id in (select id from tb_user limt 900000,10);   --不可行
--可以这样
explain select a.* from tb_user a,(select id from tb_user order by limt 900000,10)b where a.id=b.id;

 count优化

select count(*) from tb_user;  在数据量大的时候也是非常耗时的

  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
  • InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是NULL,累计值就加 1,否则不加,最后返回累计值。
用法:count(*)、count(主键)、count(字段)、count(数字)

按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(*),所以尽量使用 count(*)。

update优化

我们主要需要注意一下update语句执行时的注意事项。

update course set name = 'javaEE' where id = 1 ;

当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。

但是当我们在执行如下SQL时。

update course set name = 'SpringBoot' where name = 'PHP' ;

当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能大大降低。

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁

要避免行锁升级为表锁.

 

阅读剩余
THE END